
Climate-smart Capital Investment Planning

Jan Whittington
University of Washington
May 5, 2022

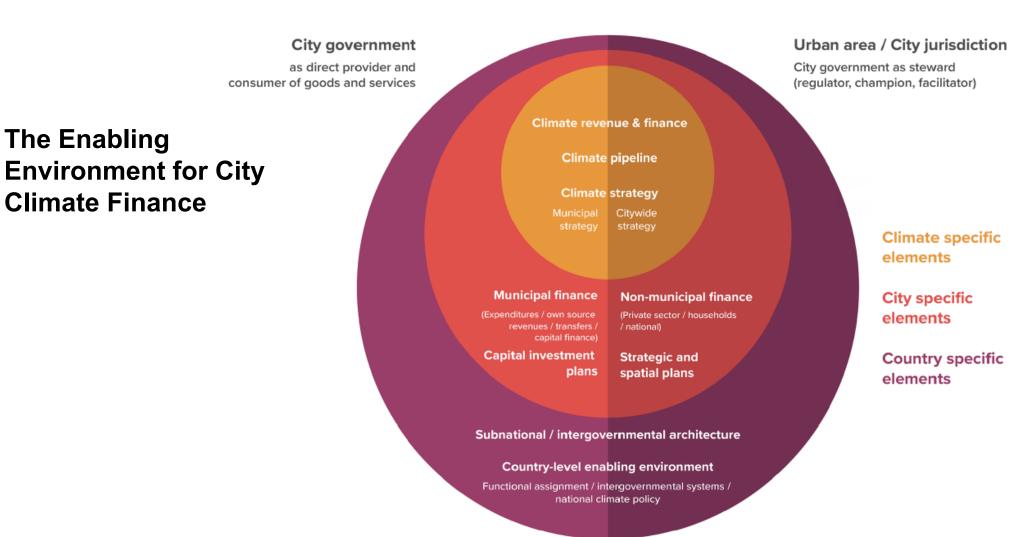
Adrienne Greve California Polytechnic State University, San Luis Obispo
The Urban Infrastructure Lab University of Washington, https://uil.be.uw.edu/

Stages of City Climate Action

The World Bank Group. 2021a. State of Cities Climate Finance 2021 Part 2: The Enabling Conditions for Mobilizing Urban Climate Finance. © World Bank. License CC BY 3.0 IGO. [Sandrine Boukerche, David Mason, Jamie Boex, and Jan Whittington] https://openknowledge.worldbank.org/handle/10986/35929

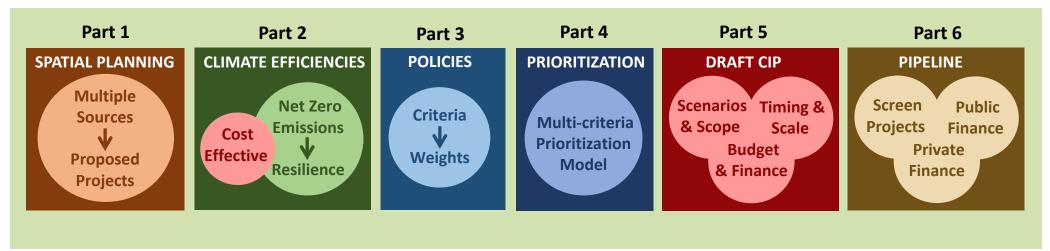
Advance to Stage 4

Embed climate action in the Capital Improvement Program

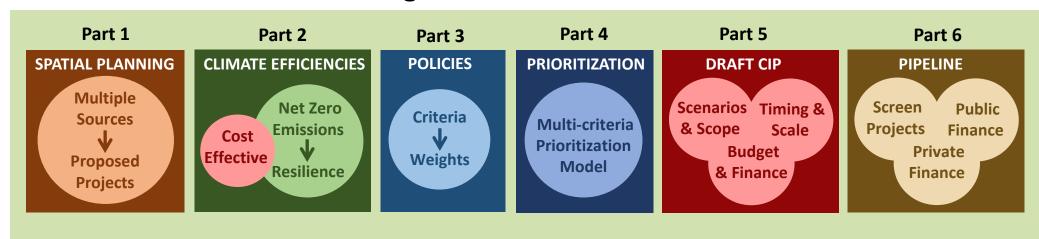

Last chance to make cost-effectively changes to investments s

Substitute decarbonizing design and technology

Improve the resilience of the capital pipeline


Mainstream climate action in the budget cycle

Issuers using engineering & climate model measures in capital pipeline



The World Bank Group. 2021a. State of Cities Climate Finance 2021 Part 2: The Enabling Conditions for Mobilizing Urban Climate Finance. © World Bank. License CC BY 3.0 IGO. [Sandrine Boukerche, David Mason, Jamie Boex, and Jan Whittington] https://openknowledge.worldbank.org/handle/10986/35929

Fit Climate Measures within the Capital Planning Process

Platform of Modules drawing from Localized Databases

Energy & Emissions (design/tech/materials)	Sequestration (design/tech/materials)	Lifecycle Cost (C/OM) (design/tech/materials)	Climate Change Impact (downscaled CC models)	Resilience Cost-Effects (location/design)
 Buildings Solid Waste Green Infrastructure Transport Water/Wastewater Power 	 Green Infrastructure Genus species Wastewater Biogas Solids Direct Air Capture 	 Buildings Solid Waste Green Infrastructure Transport Water/Wastewater Power Direct Air Capture 	 Flood Drought Fire Sea Level Rise Severe Storm Landslide Urban Heat Tsunami 	 Flood Drought Fire Sea Level Rise Severe Storm Landslide Urban Heat Tsunami

Early Support and Field Testing

2013 World Bank President's Initiative

to reach 300 cities in developing countries over 4 years to help them plan for a low-carbon future and get the needed financing flowing

Task force to Catalyze Climate Action

Low Carbon Livable Cities & Resilient Cities Initiatives

World Bank City Creditworthiness Initiative

World Bank City Resilience Program

Partnerships and funding sources

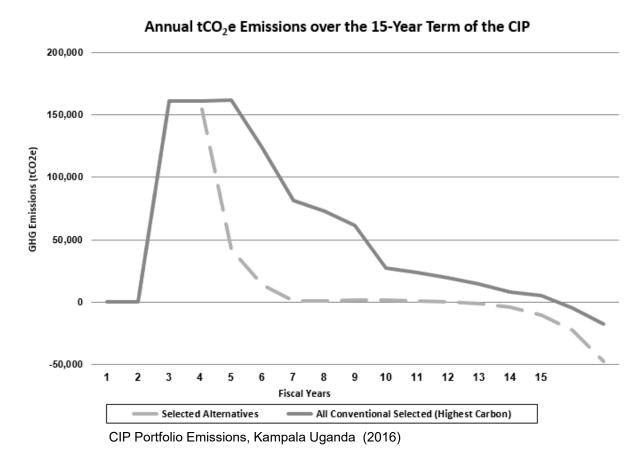
World Bank, PPIAF, Rockefeller Foundation, Global Environment Facility, C40 Cities Network, UN-Habitat, Korean Green Growth Fund, African Development Bank, UNIDO,...

Workshops and technical assistance programs

700+ municipal directors of finance & planning in 30+ countries, including C40 cities, Rockefeller's 100 Resilient Cities

Country-wide workshops in Colombia, Jordan, Palestine, India, Uganda, Rwanda, Tanzania, Ethiopia, Kenya, Indonesia

Regional workshops, East Asia (12 nations), Washington DC (18 nations)
India


San Francisco Public Utilities Commission

Field Test: Modify Projects to Eliminate GHG Emissions

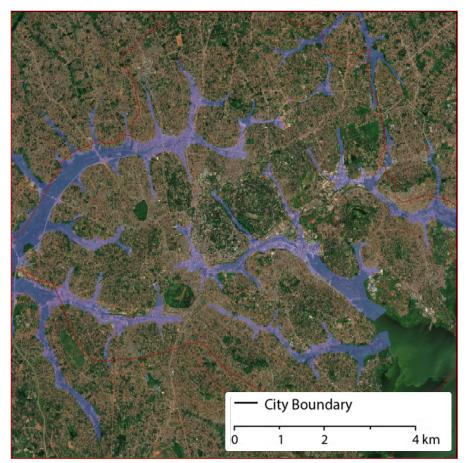
Review and modify project design to reduce or eliminate GHG emissions

For GHG emissions:

- Check market prices for GHG-related designs and technologies
- Modify designs for energy efficiency, elimination of fossil fuels, electrified transportation
- Alter cost estimates to reflect modifications
- Estimate capital, operation, and maintenance cost with and without modifications
- Forecast GHG emissions with and without modifications

Field Test: Eliminating GHG Emissions through the Climate-smart CIP

8 cities and 187 projects in Eastern Europe and East Africa

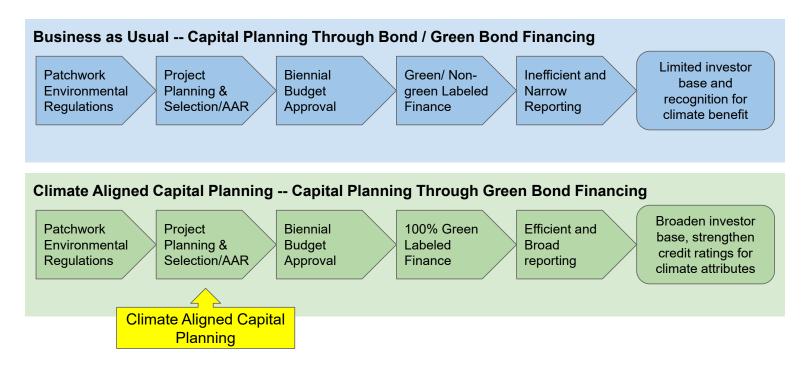

	# of projects	Annual carbon emissions for conventional (tCO ₂ e)	Annual carbon emissions for selected (tCO ₂ e)		Selected vs Conventional Annual Emissions (tCO ₂ e)					ons		
Commercial	22	1,967.64	(170.05)									
Public	32	1,542.41	30.24		Ē							
Residential	5	14.00	(11.00)		1							
Transport	78	39,287.29	19,818.94									
Utility - Energy	5	0.00	0.00									
Utility - Water	7	29.00	(16.00)		1							
Vegetation + landscaping	16	(87.00)	(11,066.00)									
Waste	16	45,136.00	(1,169.00)		- 67							
Equip & Other	6	188.65	12.57		1							
Total	187	88,077.99	7,429.70		-	-						
				-1000	0	10000	30	0000	50000	70000	90000	110
				■ Conv'l ■ Selected								

Field Test: Modify Projects to Enhance Resilience

Modify site location and design to avoid losses and enhance resilience

Process:

- 1. Model all hazards (extreme events into the future with climate change)
- 2. Compare to alternative sites as needed
- 3. Modify designs to withstand or adapt
- 4. Alter cost estimates to reflect design and site modifications
- 5. Estimate financial losses with and without modifications


Extreme Flood Map 2100, Kampala Uganda (Q1000, 2016)

Field Test: Improving Resilience through the Climate-smart CIP

8 cities and 187 projects in Eastern Europe and East Africa

	# of projects	Total losses for conventional (million USD)	Total losses for selected (million USD)		onal Losses				
Commercial	22	1,102.32	13.02						
Public	32	1,328.93	483.14						
Residential	5	82.64	3.55						
Transport	78	3,683.09	213.50						
Utility - Energy	5	201.34	47.90						
Utility - Water	7	41.95	0.15						
Vegetation + landscaping	16	62.38	49.11						
Waste	16	110.20	53.29			_			
Equip & Other	6	25.68	0.06						
Total	187	6,638.53	863.73						
				0%	20%	40%	60%	80%	100
						■ Selected ■ Conv'l			

Perspective from San Francisco Public Utilities Commission (SFPUC)

Affirm the link between Climate-smart CIPs and green bond reporting & finance Expansion of modeling to accommodate Wastewater Utilities

Pilot program calendar year 2021

SFPUC Pilot

Decarbonization

Compare project designs for:

Scale efficiencies
GHG intensity of energy
source
GHG emissions
Carbon Sequestration
Capital cost
Lifecycle cost

Resilience

Compare project designs for:

Capital cost
Lifecycle cost

Vulnerability to extreme events

Over the lifecycle:

Cost of extreme events Cost of design strategies

Losses avoided

Suggested capital reserves

Resilience dividend

Social Impact

Forecast effects on:

Local Employment (shown)

EJ Goals

Community Benefits

LOS Goals

SFPUC Pilot – Preliminary Results, Decarbonization in the CIP

				Project 1			Project 2		
				de Plant Dige lization Upgr		Baker Beach Green Street Project			
Criteria	Unit	Indicator	Conventional	Low Carbon	Carbon Zero	Conventional	Low Carbon	Carbon Zero	
Scale	Percent Proportion of conventional		1.00	1.00	1.00	1.00	1.00	1.00	
	Percent	Percent scale of conventional	100%	100%	100%	100%	100%	100%	
	M2 or Count	Square meters of conditioned space or count	20	20	20	1,553	1,553	1,553	
Energy Source	tCO2e/MWh	Carbon intensity of energy sources	0.44	0.28	-	0.44	0.28	-	
	Percent	Percent tCO₂e per MWh of conventional	100%	64%	0%	100%	64%	0%	
Energy Savings	MWh/year	Energy intensity	642	230	-	366	276	241	
and Sequestration	Percent	Percent annual tCO2e of conventional	100%	35%	0%	100%	49%	0%	
	Years	Period of lifecycle	20	20	20	25	25	25	
	tCO2e/lifecycle	Lifecycle emissions without sequestration	5,686	1,305	-	4,044	1,961	-	
	tCO2e/lifecycle	Life-cycle carbon sequestration (at plant maturity)	512	1,726	3,454	39	32	77	
	tCO2e/lifecycle	Net lifecycle carbon equivalent emissions	5,174	(421)	(3,454)	4,005	1,929	(77)	
Capital Cost	Percent	Percent capital cost of conventional	100%	93%	98%	95%	96%	100%	
	Million	Capital Cost	15	14	14	6	6	6	
Life-cycle Cost	Percent	Percent life-cycle cost of conventional	100%	73%	90%	98%	98%	100%	
	Years	Lifecycle (Years)	20	20	20	25	25	25	
	Million/lifecycle	Lifecycle Operation and Maintenance Cost	17	16	16	2	2	2	
	Million/lifecycle	Lifecycle Major Maintenance Cost	21	8	17	0	0	0	
	Million/lifecycle	Lifecycle Cost	52	38	47	8	8	8	

Indicators compare alternative project designs for:

Scale efficiencies
GHG intensity of energy source
GHG emissions
Carbon Sequestration
Capital cost
Lifecycle cost

Climate Modeling for SFPUC

SFPUC in two phases, to fit decision-making approach

- First applying climate modifications to projects at 10% engineering
- Second applying process to prioritize projects in the CIP

Climate modeling (Prof. Adrienne Greve, CalPoly):

- The basis for the projected impacts is typically SSP 8.5 (IPCC Shared Socio-Economic Pathways)
- For California, Cal-Adapt.org has downscaled global climate models
- Exceptions to Cal-Adapt:
 - The model that projects a drier/warmer future, HadGEM2-ES, was also chosen for most cases
 - One exception is the choice to include the model CNRM-CM5 (cooler/wetter) for flooding to assure that we were not under-forecasting future storm events.
 - For hazards not affected directly by climate change (earthquake, tsunami, and some landslides), city and state data was utilized.

SFPUC Pilot: Hazards Evaluated

The worst plausible hazard occurring

during the life of project (80 to 100 years).

Natural Hazards

Climate Change Impacts

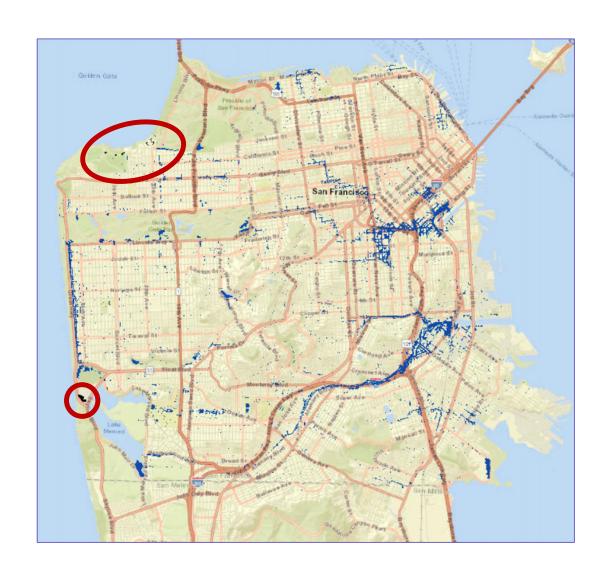
Climate-Exacerbated Impacts

Flooding

Sea Level Rise

Earthquake

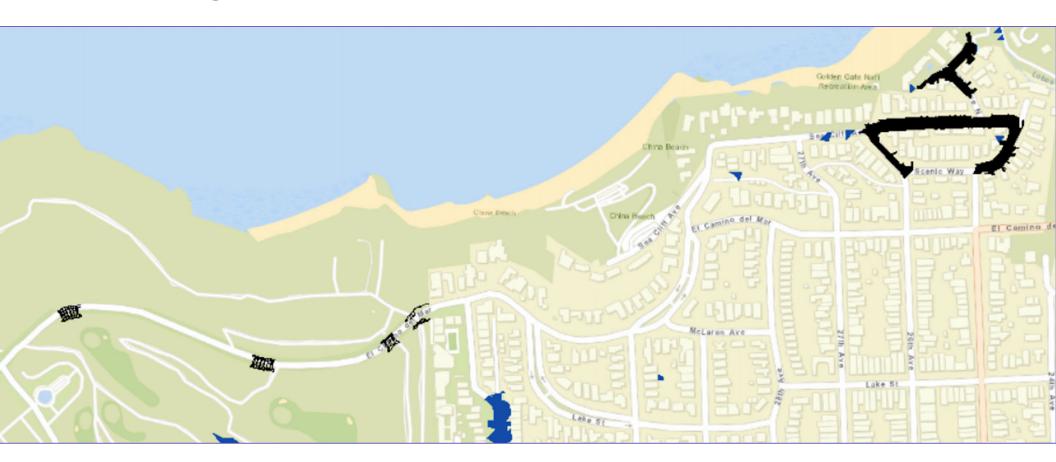
Urban Heat Island Effect


Tsunami

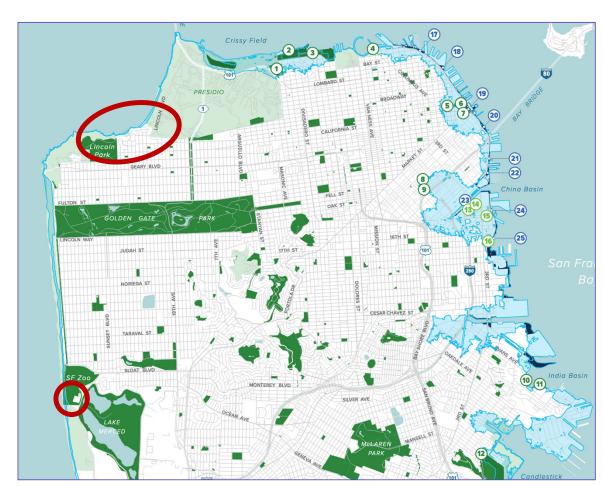
Fire

Landslide/Liquefaction

Flooding


- Based on downscaled climate models (Cal-Adapt) and NOAA storm frequency tables
- Future flooding resulting from intense rain was forecast by SFPUC staff
- Location on a peninsula limits the surficial flood risk

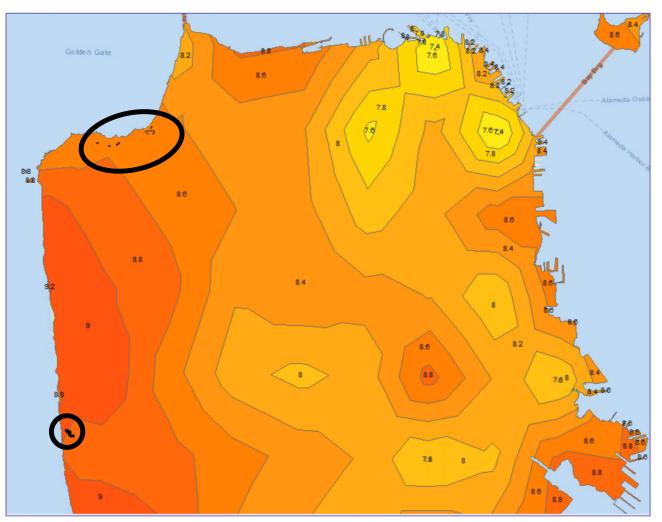
Flooding – Oceanside Biogas



Flooding – Baker Beach

Sea Level Rise

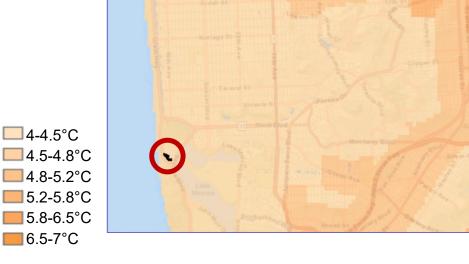
- Cal-adapt (CEC 2021)
- 2.74 m scenario
- Increased levels of sea level rise primarily affect the eastern edge of the city.



City of San Francisco, 2020

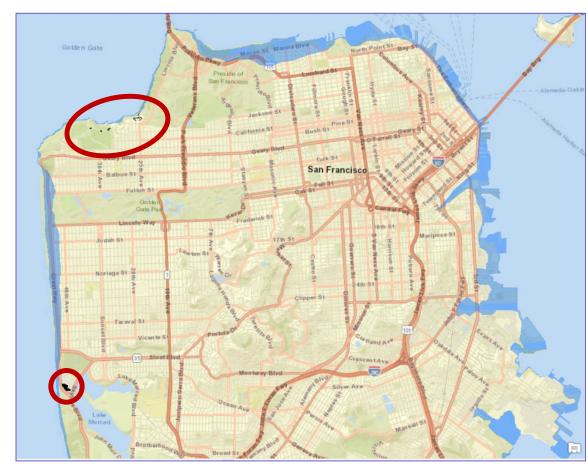
Earthquake

"The Modified Mercalli Intensity (MMI) estimates the shaking intensity from an earthquake at a specific location by considering its effects on people, objects, and buildings."


(ABAG Resilience Program, 2021, https://abag.ca.gov/sites/default/files/making_sense_of_th e modified mercalli intensity scale.pdf)

Earthquake Shaking Scenario: San Andreas Fault, CISN 2018

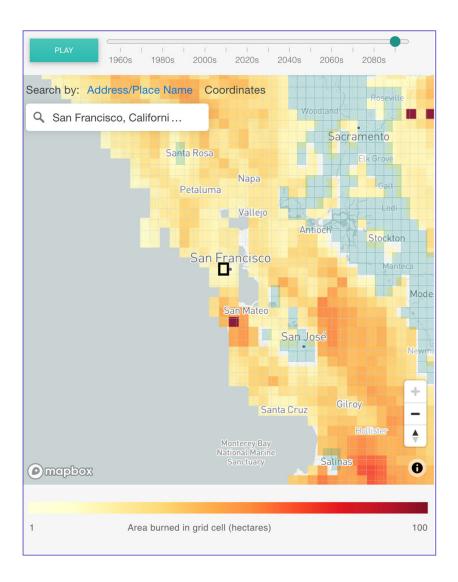
Urban Heat Island


- Combines urban heat and climate change temperature change (NOT heat waves)
- Accounts for greenspace, water, and trees
- Accommodates future development plans
- Projects future population growth

Golden Gate

Tsunami

Location of both pilot projects along the bluffs on the west side of the city means risk is low in the event of a tsunami.



ABAG, 2021; California Geological Survey, 2021

Fire

Cal-adapt (2021)

- In 2090, it is still projected to be at the bottom of the fire risk scale in CA.

Landslide & Liquefaction

"Seismic Hazard Zone Map presenting areas where liquefaction and landslides may occur during a strong earthquake. Three types of geological hazards, referred to as seismic hazard zones, may be featured on the map: 1) liquefaction, 2) earthquake-induced landslides, and 3) overlapping liquefaction and earthquake-induced landslides."

(SF Gov, 2019)

Landslide & Liquefaction Oceanside Biogas

Landslide & Liquefaction

SFPUC Pilot – Preliminary Results, Resilience in the CIP

				1			2		
				e Plant Dig zation Upg		s Baker Beach Green Street Project			
				Low Carbon		Low Carbon			
			Resilient	Carbon Zero Resilient	Resilient	Resilient	Carbon Zero Resilient	Resilient	
Category	Unit	Proportion of conventional	Convtl	Moderate	Robust	Convtl	Moderate	Robust	
Capital Cost	millions	Capital cost including expenses for resilience	14	14	14	6	6	6	
	Proportion	Percent capital cost compared to conventional (cost of facility)	98%	98%	98%	100%	100%	100%	
Life-cycle Cost	millions	Percent lifecycle cost compared to conventional (lifecycle cost of facility)	90%	90%	90%	100%	100%	100%	
	Years	Lifecycle (Years)	20	20	20	25	25	25	
	Million/year	Annual Operation and Maintenance Cost (including expenses for resilience)	1	1	1	0	0	0	
	Million/lifecycle	Lifecycle cost (with low carbon and resilience modifications)	47	47	47	8	8	8	
Vulnerability to	As shown	All Plausible Extreme Events	5	5	5	6	6	6	
Extreme Events	Ratio	Rosenhead Robustness Factor	5 5	5 5	3 5	6 6	6 6	2	
	millions	Avoided cost from resilience (one occurrence of each extreme event)	-	-	15	-	-	1	
	Proportion	Percent cost from hazards compared to conventional (one occurrence)	100%	100%	11%	100%	100%	85%	
	millions	Total operation loss from hazards (one occurrence)	0	0	0	0	0	0	
	millions	Total capital loss from hazards (one occurrence)	17	17	2	4	4	3	
	millions	Capital reserves for CIP for resilience (one occurrence of each extreme event)	17	17	2	4	4	3	
Climate	Years	Frequency of occurrence in life-cycle (an illustration, not an estimate)	1	1	1	1	1	1	
Informed Cost	millions	Cost of hazards to conventional in life-cycle	17	17	17	4	4	4	
	millions	Cost of hazards to resilient alternative in life-cycle	17	17	2	4	4	3	
	millions	Avoided cost from resilience in life-cycle (all extreme events)	-	-	15	-	-	1	
	Proportion	Percent of life-cycle cost of hazards (all extreme events)	100%	100%	11%	100%	100%	85%	
	millions	Capital reserve to repair and continue operations (all extreme events)	17	17	2	4	4	3	
	millions	Lifecycle capital expenditure for resilience (all extreme events)	64	64	49	12	12	12	

Indicators compare alternative project designs for:

Capital cost Lifecycle cost Vulnerability to extreme events Over the lifecycle:

Cost of extreme events
Cost of design strategies
Losses avoided
Suggested capital reserves
Resilience dividend

SFPUC Pilot – Preliminary Results, Job Creation Forecasts in the Climate-smart CIP

	Oceanside Pl	ant Digeste	r Gas Utilizatio	n Upgrade	Bak	er Beach Gre	en Street Proje	ect
Type of Project	Wastewater				Stormwater			
Estimated contract value (million USD)	\$11.75				\$4.50			
Contract value (mill	ion USD)							
	Assum	otion	User Ove	erride	Assum	ption	User Ove	erride
	Percentage	Value	Percentage	Value	Percentage	Value	Percentage	Value
Indireect costs	40%	\$4.70	40%	\$4.70	40%	\$1.80	40%	\$1.80
Direct costs	60%	\$7.05	60%	\$7.05	60%	\$2.70	60%	\$2.70
TOTAL	100%	\$11.75	100%	\$11.75	100%	\$4.50	100%	\$4.50
Direct cost (million	USD)							
	Assumption		User Override		Assumption		User Override	
	Percentage	Value	Percentage	Value	Percentage	Value	Percentage	Value
Material costs	50%	\$3.53	68%	\$4.78	50%	\$1.35	34%	\$0.93
Labor costs	50%	\$3.53	32%	\$2.27	50%	\$1.35	66%	\$1.77
TOTAL	100%	\$7.05	100%	\$7.05	100%	\$2.70	100%	\$2.70
Labor costs (million	USD)							
	Assum	otion	User Override		Assumption		User Override	
	Percentage	Value	Percentage	Value	Percentage	Value	Percentage	Value
Laborer	36%	\$1.26	36%	\$0.82	38%	\$0.51	38%	\$0.67
Operating engineer	21%	\$0.72	21%	\$0.48	17%	\$0.23	17%	\$0.30
Electritian	13%	\$0.47	13%	\$0.30	10%	\$0.14	10%	\$0.18
Carpenter	9%	\$0.31	9%	\$0.20	11%	\$0.15	11%	\$0.19
Painter	4%	\$0.15	4%	\$0.09	6%	\$0.08	6%	\$0.11
Plumber	5%	\$0.18	5%	\$0.11	5%	\$0.07	5%	\$0.09
All others	12%	\$0.44	12%	\$0.27	13%	\$0.18	13%	\$0.23
TOTAL	100%	\$3.53	100%	\$2.27	100%	\$1.35	100%	\$1.77

For each project, a forecast of the effects on:

Local Employment (shown)
EJ Goals
Community Benefits
LOS Goals

Climate-smart Capital Investment Planning

Jan Whittington janwhit@uw.edu
University of Washington

May 5, 2022

Adrienne Greve California Polytechnic State University, San Luis Obispo
The Urban Infrastructure Lab University of Washington, https://uil.be.uw.edu/